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LETTER TO THE EDITOR 

A theory of period-doubling bifurcations in 
two-dimensional reversible area preserving 
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$ Department of Physics, Korea Advanced Institute of Science and Technology, PO Box 
150 Chongyangni, Seoul, Korea 

Received 14 September 1982 

Abstract. For a class of two-dimensional reversible area preserving mappings, a theory 
is developed which describes how the period doubling bifurcation entails the onset of 
hyperbolic instability with reflection. Henon’s quadratic mapping, Chirikov’s standard 
mapping and D e  Vogeiaere’s mapping all belong to this class. 

In many recent works (Feigenbaum 1978, 1979, Derrida et a1 1979, Helleman 1980) 
it is demonstrated that periodic solutions of the dynamical systems of a certain class 
bifurcate in the period doubling sequences. In one dimension, Feigenbaum (1978, 
1979) finds an infinite sequence of period doublings in which a periodic orbit goes 
unstable as a parameter is varied and a pair of stable new orbits of twice the period 
is born. Similar behaviour has been observed in two-dimensional area preserving 
maps (Greene et a1 1981, Bountis 1981, Benettin et a1 1980a, b), although a definite 
relationship is yet to be demonstrated between the period doubling and the instability 
of the period in the case of two-dimensional area preserving maps. In this work we 
demonstrate explicitly that in a certain class of two-dimensional area preserving maps 
a periodic orbit indeed bifurcates into period doubling orbits when the orbit becomes 
unstable as a parameter is varied. 

Consider a two-dimensional mapping T of one parameter a, 

where two variable functions 6, depend on the parameter a. An n-period orbit may 
be defined as the fixed point of T” as P: = T”P:. We use P to designate a point 
P = ( x ,  y )  on a two-dimensional plane. The fixed point relationship can be rewritten 
as Pn(Po = P:) = P:, where Pn+m(Po) = Pn(Pm) = T”Pm = Tn+mPo. A quantity called 
the ‘residue’ R is convenient in discussing the stability of an orbit (Greene et a1 1981). 
It is given as 

R = ( 2 - T r M ) / 4  (2) 
where M is a 2 x 2 matrix constructed from M, as 

n - 1  

M =  n - M ,  
i = O  

(3) 
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and Mi is in turn given as 

with & = a [ ( x ,  y ) / a x  etc and Fi = Pi(Po) = TiPo, Po = P: being the initial point of the 
n-period orbit. The orbit is stable for O <  R < 1 and unstable for R < 0 and R > 1 
except for the special cases of low order resonances. The area preserving is expressed 
by det M = 1. Also useful is the concept of reversibility (Greene et a1 1981) which 
has greatly facilitated numerical studies of period doubling sequences. In many cases 
of reversible maps, the period doubling occurs on a single line in the x y  plane called 
the 'symmetry line'. The initial point Po of a 2n-periodic orbit (i.e. Po = P:") can be 
found by the condition that P,,(Po) as well as PO itself lies on the symmetry line. It is 
suggestive that the bifurcation condition may be constructed on the periodic points 
on the symmetry line. Let T be reversible so that a 'symmetry' S exists. That is, 
T = (TS)S  with S2 = 1 and (TS)' = 1, so that the inverse of T, T-' = STS, exists. The 
symmetry lines are defined as the fixed line either of S or of (TS) .  That is, P' = SP = P 
or P"= (TS)P=P.  It should be noted that these equations furnish lines instead of 
points, hence the name fixed line or symmetry line. Let 

x = h ( y )  ( 5 )  

represent one of the symmetry lines. The initial Po = (no, Yo) of a 2n-period orbit 
can be found by the solution of simultaneous equations fo= h ( g o )  and x , ( P o ) =  
h ( y n ( P o ) ) .  If we define g, ( z )  = y n  (Po) with x o  = h ( z )  and y o  = z ,  then some roots of the 
equation 

( P , ( z ) = g , ( z ) - z  = o  (6 )  
will give the initial point of the n-period orbit on the symmetry line. An additional 
condition fo = x , ( P o )  for Po whose y component is the root of equation (6 )  needs to 
be satisfied in order that Po is the n-period initial point. We construct a function 

(7) 
Some of the roots of the equation +zn(z) = 0 then give the initial point of the 2n 
period. This observation follows from the following considerations. The T" image 
of a point Po on the symmetry line P,,(Po) = ( x n ( h ( y o ) ,  y o ) ,  y n ( h ( y o ) ,  y o ) )  may or may 
not lie on the symmetry line. If it does not lie on the symmetry line, shift the point 
P,,(Po) parallel to the x axis until it intersects the symmetry line. We designate this 
point as (figure 1) Pk = ( h ( y , , ( P o ) ) ,  yn(Po)) .  Consider now Pi,,, thus obtained from 
T"Pk. The y component of Pi,,, y i n  will have the same functional dependence of y n  
on Y O ,  namely Y n  = g " ( y o ) .  Thus Y ; n ( Y n ) = g n ( Y n )  SO that Y ; n ( Y o ) = g n ( g n ( Y o ) ) .  If j j o  is 
the y component of the initial point PO of the 2n-period orbit, the T" image of Po lies 
on the symmetry curve. That is, Pk = P, or y i n ( y o )  = y 2 , ( y 0 )  = yo. Therefore some 
of the roots of 

(8) 

4 2 n  (2 1 by 
42" (2) = (P" ((P" (2) + z ) + (P" (2 1. 

t L 2 n  (2) = g n  ( g n ( z ) ) - z  

will give the y component of the initial point of the 2n-period orbit. Substitution of 
equation (6 )  into (8) gives equation (7). 

Let us suppose that the functions thus far constructed, ( ~ " ( 2 ;  a )  and 4b2,,(z; a) ,  are 
smooth both in z and the parameter a. We assume that the period doubling bifurcation 
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Figure 1. The point P,, is the T” image of a point Po and Pk is obtained by shifting P,, 
parallel to the x axis until it intersects the symmetry line x = h ( y ) .  

occurs at a = a, and describe in the following what happens to these functions of (P, 

and (112, in the vicinity of a =a,. Possibly two fixed points f0 = yT,(a >a,) and 
y”; = yzA(a > a,) are created on both sides of j j o  = y : (a > a,) as a passes a = a, (figure 
2). We let y l  =min{yz,,((a >a, ) ,  yz*,i<u >a,)}-d and y~=max{yf,,(a > a , ) ,  yz*(a > 
a,)}+d with d > 0 and suppose that (L2,(y1) >O; (/12,(y2) < 0. Then it is easy to see 
that both q,(y, a <a, )  and $2,(y, a <a,) cross the y axis at yo = y:(a <a, )  with 
negative slopes, since an n-period orbit is also a 2n-period orbit. As a increases the 
negative slope, cpL(y:, a <a,>,  becomes steeper until qL(y:, a = a , )  = -2 while 

Figure 2. The behaviour of two functions (P,, and $12” in the vicinity of a = a, where the 
period doubling bifurcation occurs as the parameter a changes from just below a = a, to 
just above. The functions qn and I&*,, are given in equations (6) and (7). 
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I$;,,(yX, a < a,)l gets smaller and becomes zero at a = a,, i.e. $;,,(y:, a = a,) = 0. This 
can be seen by differentiating equation (7), 

$;n(z) = V A ( V n ( 2 )  + z ) ( ~ h ( z )  + 1) +  PA (2 1, 

Ill;n(y:) = CPA(YX )(cPA(YX) + 2). 

and putting z = y X to get 

(9) 
When cpA(y,*, a > a , )  passes below the value -2, $;,(y,*, a > a , )  becomes positive and 
it becomes possible to have two roots of (LZn(y) = 0 on both sides of yX(a >a , ) .  We 
also show that the period doubling bifurcation entails the instability of the n-period 
orbit for a certain class of 2~ area preserving mappings by showing that 

cpk(yX, U )  = -2R. (10) 
From the observations of Greene er a1 (1981) we see then that as R increases from 
R < 1 to R > 1, corresponding to a < a, and a > a,, the stable elliptical orbit (0 < R < 1) 
becomes unstable at R = 1 (a = a,) and it changes into a hyperbolic orbit with reflection 
(R > 1) and thus period doubling bifurcation ensues. 

In the following we prove that equation (10) is satisfied for a certain class of T, 
namely those constructed from a one-dimensional non-invertible map xnCl = F(x, )  as 
follows (Ott 1981): 

Restricting to the class of T given by equation ( l l ) ,  we find two complementary 
symmetries (Greene et af  1981) 

X r + l =  Yr 
Y t + l  = xt 

S = {  

and 

I yr+1= Yr. 

We now consider the periodic orbits on the symmetry line of TS, i.e. 

x = F ( y ) / 2 .  (14) 
We present two lemmas which are useful for the proof of equation (10). 

Lemma 1. The x components of an even n-period orbit starting from the initial point 
Po = (ao = F(yo)/2, yo) satisfy 

T n / Z - i  = f n / 2 + i - 2  for f = l , 2  , . . . ,  4 2 - 1 .  (15) 
Lemma 1 follows from the fact that the midpoint of the even n-period orbit, 
y,p) lies on the symmetry line. 

We define 
n -2 a= fl Mi 
i = O  

where Mi's are given in equation (4). 
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Lemma 2. The sum of the off-diagonal elements of n? is zero. That is, 

l a 1 2  + n?21= 0 (17) 

where 

Lemma 2 follows from the fact that Mi’s are of a special form. 

Making use of lemmas 1 and 2 we can prove equation (10). 
The mapping given by equation (1 1) covers quite a large class of mappings. When 

we choose F ( x )  = 1 -ax2,  it is the Henon quadratic mapping studied by Bountis 
(1981), and when we make appropriate area preserving transformations, we can show 
that T with F = 2x - p sin 27rx is equivalent to Chirikov’s (1979) standard mapping, 
T with F ( x )  = 2 f ( x )  to the general De Vogelaere mapping (Greene et a1 1981) and 
T with F ( x )  = 2[px - (1 - p ) x 2 ] ,  the quadratic De Vogelaere mapping studied by 
Greene et a1 (1981). The T’s with F = 2x - p f ( x )  of various f ( x )  are also equivalent 
to the mappings studied extensively by Benettin et al (1980a, b). However, it still 
remains to be checked whether the theory formulated is applicable to all of the 
above-mentioned class of mappings. The conditions are that the periodic orbits exist 
on the symmetry lines of equation (14) and the stability breaks down smoothly as the 
parameter changes. If they do, the period doubling bifurcations occur as the periodic 
points of the orbit become hyperbolically unstable with reflection. We are testing 
this behaviour for a class of nonlinear mappings and the result will be reported 
elsewhere. 
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